Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Xianghong Huang, ${ }^{\text {a }}$ Qian-Feng Zhang ${ }^{\text {b }}$ * and Herman H. Y. Sung ${ }^{c}$
${ }^{\text {a }}$ College of Applied Technology, Wenzhou University, Wenzhou, Zhejiang 325035, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, People's Republic of China, and
${ }^{\text {c }}$ Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail: zhangqf@ahut.edu.cn

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.142$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Nitro-2-propyl-1H-indole

There are two independent molecules in the asymmetric unit of the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, which differ in the conformation of the propyl substituent. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ interactions between inversion-related molecules result in a supramolecular assembly.

Comment

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Effective hydrogen-bonding interactions are observed in these compounds (Sonar et al., 2004). Recently, we have carried out a large scale synthesis of a series of indole compounds. We report here the structure of the title compound, 6-nitro-2-propyl- $1 H$-indole, (I).

(I)

The asymmetric unit of (I) (Fig. 1) consists of pair of molecules $(A$ and $B)$ held together by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2). In one molecule of the enantiomeric pair, the plane through the indole ring system forms a dihedral angle of $55.9(2)^{\circ}$ with the $\mathrm{C} 2 / \mathrm{C} 10-\mathrm{C} 12$ plane [61.4 (3) ${ }^{\circ}$ in the other molecule]. No significant differences are found between the corresponding bond distances and angles in these two molecules (see Table 1); the bond lengths in (I) are within normal ranges (Allen et al., 1987). All the $\mathrm{C}-\mathrm{C}$ bond distances in the indole ring system have typical $\mathrm{C} s p^{2}-\mathrm{Csp}{ }^{2}$ values. The average $\mathrm{C}-\mathrm{C}$ bond distances within the rings of the two independent indole moieties are 1.400 (3) and 1.398 (3) \AA. In the five-membered rings, the intra-ring bond angles range from 106.3 (2) to 109.6 (2) ${ }^{\circ}$; the $\mathrm{N} 1-\mathrm{C} 2$ and $\mathrm{N} 1-\mathrm{C} 9$ bond lengths [average 1.375 (3) \AA] are well within the range of the

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme for the two independent molecules.

Received 4 February 2004 Accepted 12 February 2004 Online 20 February 2004

Figure 2
A view of the molecular packing, showing the network of hydrogen bonds as dashed lines.
values normally considered standard for $\mathrm{C}-\mathrm{N}(1.47 \AA)$ and $\mathrm{C}=\mathrm{N}(1.28 \AA)$ bonds, which indicates that the geometry around N 1 is normal $s p^{2}$ coordination, as expected for π-conjugation of the indole ring (Sonar et al., 2004; Du \& Zhao, 2003). The sums of the angles around atoms N2 show planar configurations, with an average $\mathrm{N}=\mathrm{O}$ bond length of 1.237 (2) \AA. In both molecules, the NO_{2} fragment is almost coplanar with the indole ring system.

In the crystal structure, inversion-related molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2), forming a supramolecular layered architecture (Fig. 2). The crystal packing is further stabilized by $\pi-\pi$ stacking interactions between the indole ring systems of molecule A at (x, y, z) and $(1-x, 1-y, 1-z)$, with their centroids separated by 3.568 (2) Å.

Experimental

The title compound was synthesized by a modification of the method previously described for the Sonogashira coupling reaction (Rodriguez et al., 2000) of 2-amino-3-nitrophenol and 1-n-pentaacetylene under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}$ and $n-\mathrm{Bu}_{4} \mathrm{NI}$ in DMF. Light yellow crystals of (I) were obtained by slow evaporation of an ethanol solution at 277 K .

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=204.23$
Triclinic, $P \overline{1}$
$a=8.22(2) \AA$
$b=11.828(3) \AA$
$c=12.088(3) \AA$
$\alpha=67.403(4)^{\circ} \AA$
$\beta=86.940(4)^{\circ}$
$\gamma=7.256(4)^{\circ}$
$V=1043.8(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.300 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1705 \\
& \quad \text { reflections } \\
& \theta=2.8-27.4^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Block, light yellow } \\
& 0.40 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.68, T_{\text {max }}=1.00$
7051 measured reflections
3980 independent reflections 2616 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0899 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{N} 2 A$	$1.235(2)$	$\mathrm{O} 1 B-\mathrm{N} 2 B$	$1.233(2)$
$\mathrm{O} 2 A-\mathrm{N} 2 A$	$1.244(3)$	$\mathrm{O} 2 B-\mathrm{N} 2 B$	$1.236(2)$
$\mathrm{N} 1 A-\mathrm{C} 9 A$	$1.374(3)$	$\mathrm{N} 1 B-\mathrm{C} 2 B$	$1.374(3)$
$\mathrm{N} 1 A-\mathrm{C} 2 A$	$1.377(3)$	$\mathrm{N} 1 B-\mathrm{C} 9 B$	$1.376(3)$
$\mathrm{N} 2 A-\mathrm{C} 7 A$	$1.457(3)$	$\mathrm{N} 2 B-\mathrm{C} 7 B$	$1.446(3)$
$\mathrm{C} 9-\mathrm{N} 1 A-\mathrm{C} 2 A$	$109.5(2)$	$\mathrm{C} 2 B-\mathrm{N} 1 B-\mathrm{C} 9 B$	$109.59(19)$
$\mathrm{O} 1 A-\mathrm{N} 2 A-\mathrm{O} 2 A$	$122.39(19)$	$\mathrm{O} 1 B-\mathrm{N} 2 B-\mathrm{O} 2 B$	$121.9(2)$
$\mathrm{O} 1 A-\mathrm{N} 2 A-\mathrm{C} 7 A$	$119.6(2)$	$\mathrm{O} 1 B-\mathrm{N} 2 B-\mathrm{C} 7 B$	$119.4(2)$
$\mathrm{O} 2 A-\mathrm{N} 2 A-\mathrm{C} 7 A$	$118.0(2)$	$\mathrm{O} 2 B-\mathrm{N} 2 B-\mathrm{C} 7 B$	$118.66(19)$
$\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	$108.7(2)$	$\mathrm{C} 3 B-\mathrm{C} 2 B-\mathrm{N} 1 B$	$109.0(2)$
$\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{C} 10 A$	$122.0(2)$	$\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{C} 10 B$	$121.9(2)$
$\mathrm{C} 8 A-\mathrm{C} 7 A-\mathrm{N} 2 A$	$117.9(2)$	$\mathrm{C} 8 B-\mathrm{C} 7 B-\mathrm{N} 2 B$	$118.2(2)$
$\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{N} 2 A$	$117.7(2)$	$\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{N} 2 B$	$118.7(2)$
$\mathrm{N} 1 A-\mathrm{C} 9 A-\mathrm{C} 8 A$	$129.8(2)$	$\mathrm{N} 1 B-\mathrm{C} 9 B-\mathrm{C} 8 B$	$130.1(2)$
$\mathrm{N} 1 A-\mathrm{C} 9 A-\mathrm{C} 4 A$	$107.78(19)$	$\mathrm{N} 1 B-\mathrm{C} 9 B-\mathrm{C} 4 B$	$107.1(2)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).
$C g 1$ and $C g 2$ denote the centroids of the five-membered rings in molecules A and B, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A A \cdots \mathrm{O} 2 B^{\mathrm{i}}$	0.88	2.10	$2.965(3)$	167
$\mathrm{~N} 1 B-\mathrm{H} 1 B A \cdots \mathrm{O} 2 A^{\mathrm{ii}}$	0.88	2.07	$2.948(3)$	173
$\mathrm{C} 8 A-\mathrm{H} 8 A A \cdots \mathrm{O} 2 A^{\mathrm{ii}}$	0.95	2.53	$3.203(3)$	128
$\mathrm{C} 11 A-\mathrm{H} 11 B \cdots \mathrm{O} 2 B^{\mathrm{i}}$	0.99	2.54	$3.448(3)$	153
$\mathrm{C} 10 B-\mathrm{H} 10 D \cdots C g 1$	0.99	2.78	$3.726(3)$	161
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots C g 2$	0.99	2.72	$3.346(3)$	121

Symmetry codes: (i) $2-x, 1-y, 2-z$; (ii) $2-x, 1-y, 1-z$.
H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$) and were allowed to ride on their parent atoms. The $U_{\text {iso }}(\mathrm{H})$ values were set to $1.5 U_{\text {eq }}$ (parent) for the methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work is supported by the Key Scientific Research Foundation of the State Education Ministry (grant No. 90301005) and Natural Science Foundation of China (grant No. 204067).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART and SAINT. Versions 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, M. \& Zhao, X. J. (2003). Acta Cryst. E59, o1645-o1647.
Rodriguez, A. L., Koradin, C., Dohle, W. \& Knochel, P. (2000). Angew. Chem. Int. Ed. 39, 2488-2490.
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2004). Acta Cryst. C60, o6-o8.
Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. \& Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.

